Plasmonic Crystals for Strong Light–Matter Coupling in Carbon Nanotubes
نویسندگان
چکیده
Their high oscillator strength and large exciton binding energies make single-walled carbon nanotubes (SWCNTs) highly promising materials for the investigation of strong light-matter interactions in the near infrared and at room temperature. To explore their full potential, high-quality cavities-possibly with nanoscale field localization-are required. Here, we demonstrate the room temperature formation of plasmon-exciton polaritons in monochiral (6,5) SWCNTs coupled to the subdiffraction nanocavities of a plasmonic crystal created by a periodic gold nanodisk array. The interaction strength is easily tuned by the number of SWCNTs that collectively couple to the plasmonic crystal. Angle- and polarization resolved reflectivity and photoluminescence measurements combined with the coupled-oscillator model confirm strong coupling (coupling strength ∼120 meV). The combination of plasmon-exciton polaritons with the exceptional charge transport properties of SWCNTs should enable practical polariton devices at room temperature and at telecommunication wavelengths.
منابع مشابه
Carbon nanotubes in a photonic metamaterial.
Hybridization of single-walled carbon nanotubes with plasmonic metamaterials leads to photonic media with an exceptionally strong ultrafast nonlinearity. This behavior is underpinned by strong coupling of the nanotube excitonic response to the weakly radiating Fano-type resonant plasmonic modes that can be tailored by metamaterial design.
متن کاملBroadband Tunable, Polarization-Selective and Directional Emission of (6,5) Carbon Nanotubes Coupled to Plasmonic Crystals
We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths....
متن کاملPlasmonic photonic crystals realized through DNA-programmable assembly.
Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volume...
متن کاملPlasmon-Enhanced Raman Scattering by Carbon Nanotubes Optically Coupled with Near-Field Cavities
We realize the coupling of carbon nanotubes as a one-dimensional model system to near-field cavities for plasmon-enhanced Raman scattering. Directed dielectrophoretic assembly places single-walled carbon nanotubes precisely into the gap of gold nanodimers. The plasmonic cavities enhance the Raman signal of a small nanotube bundle by a factor of 10(3). The enhanced signal arises exclusively from...
متن کاملOptical trapping and manipulation of nanostructures.
Optical trapping and manipulation of micrometre-sized particles was first reported in 1970. Since then, it has been successfully implemented in two size ranges: the subnanometre scale, where light-matter mechanical coupling enables cooling of atoms, ions and molecules, and the micrometre scale, where the momentum transfer resulting from light scattering allows manipulation of microscopic object...
متن کامل